
Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization Efficiency Metrics
Zakhar A. Matveev, CJ Newburn

 with input from Dmitry Prohorov, Hideki Saito

1

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Metrics list

2

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization Metrics
� Actual speed-up (could be: wall-clock, total, inclusive/exclusive):

� S = Time (Scalar Loop) / Time (Vector Loop)

� Efficiency = G/Max_S , Max_S <= Max_VL

� Gain/Efficiency :

� G = Scalar Loop Cost (cycles) / Vector Loop Cost (cycles)

� Efficency = G/Max_Gain , Max_G <= Max_VL

How much faster the vector iterations are? Reflects quality of compiler code-
generation.

Should be equal to S in case of VPU-bound codes

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Vectorization Metrics
� Path Reduction:

Scalar Loop Path (# instructions) / Vector Loop Path (# instructions)

Gives a sense of the fraction of non-vector (overhead) instructions in a loop

� Vector Utilization / Intensity (“elements active”) – only works on KNC

VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED

Fraction of vector instructions that do work on vector registers. Reflect vector
registers utilization

If a mask bit is set for an element, it was presumed to be used. Drops for
branchy if-else codes

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intensity/Utilization
Advantage:

� Dynamically “measures” fraction of vector instructions that do work (mask-aware)

Disadvantages:

� Only available on KNC (other metrics could be computed on IVB or Broadwell)

� More work/utilization doesn’t mean more speed-up (if you care)
� Some code may have good vector utilization, but scalar version could be faster than it!

� Shifts/shuffles/“misc.”, prefetch instructions are counted “inappropriately”.

� Assumption: Mask bits are only set for elements in which useful work is done

� This is false: Extra mask bits can be set, as long as there are no side effects.

� This is per binary loop, so separate values for peel/remainder..

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Gain/Efficiency Estimate
Advantage:

� Accounts all nuances of vector vs. scalar assembly and maps it to speed-up

Disadvantages:

� Usually not available if you program in assembly/intrinsics.

� This is code generation performance model, not measurement. This doesn’t
account dynamic mask values as well as other dynamic data (trip counts).

Advisor Gain/Efficiency:

� Recalculate (calibrate) Compiler Gain/Efficiency taking into account dynamic
knowledge of trip counts, peel-remainder times.

� But limited to Xeon right now.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Tools to calculate metrics

7

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
8

Intensity/Utilization: VTune Amplifier XE
2016 Beta for KNC

VTune: General Exploration Analysis Type
Part of Intel Parallel

Studio XE 2016

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
9

Gain/Efficiencty: Intel Compiler (>=15.x)

Intel Compiler:
-O2 -opt-report5

Part of Intel Parallel
Studio XE 2016

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
10

Gain/Efficiencty: Advisor XE 2016 Beta
(for Xeon only)

Advisor : Survey Analysis Type
Part of Intel Parallel

Studio XE 2016

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Some word on methodology..

11

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

WHAT to measure?
Actual Speed-up vs. Efficiency vs. Intensity. ??
� Measuring all and comparing results –

is “useful enough” exercise already.

� Normally stick with at least one of them for workshop exercises.

Kernel vs. Sub-part vs. Workload ??

� Per-workload speed-up/efficiencies are lower than per-kernel (Amdahl’s law)

� Both are important to understand, but don’t mix them up!

� For big HPC codes you rarely even look into everything. Define sub-set.

� Measuring / establishing proper baselines is very important/not-trivial itself

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Some take-aways
Vectorization efficiency/gain

� Take it as input, but treat it as performance estimate

� Use Advisor if you want to overcome some of “static code-generation knowledge”
limits

Vectorization intensity

� Take it as input, but don’t treat it as accurate:

� Low intensity definitely means you have an issue. Otherwise – who knows.

� If higher than expected, inspect code for masks that are all 1 even through conditionals

� The VPU_ELEMENTS_ACTIVE won’t be available for anything other than KNC

Don’t compare apples with oranges (kernel and workload, etc)

Don’t mix up dimensional and non-dimensional metrics

